引用本文:谢卫平,洪月菊,吴磊,陆勇.基于多元回归理论的太湖湖泛预警模型研究[J].环境监控与预警,2015,7(5):7-11
XIE Wei ping,HONG Yue ju,WU Lei,LU Yong.Study on the Early Warning Model of Feculent and Anaerobic Water Aggregation in Taihu Lake Using the Multiple Regression Theory[J].Environmental Monitoring and Forewarning,2015,7(5):7-11
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 12650次   下载 4050 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于多元回归理论的太湖湖泛预警模型研究
谢卫平,洪月菊,吴磊,陆勇1,2,3
1.宜兴市环境监测站,江苏 宜兴 214200;2.武汉市规划研究院,湖北 武汉 430000;3.东南大学能源与环境学院,江苏 南京 210096
摘要:
关键词:  多元回归理论  太湖  湖泛  预警模型
DOI:
分类号:X84
文献标识码:A
基金项目:江苏省环境保护厅2011年省级环保科研课题管理基金资助项目(201154)
Study on the Early Warning Model of Feculent and Anaerobic Water Aggregation in Taihu Lake Using the Multiple Regression Theory
XIE Weiping,HONG Yueju,WU Lei,LU Yong1,2,3
1.Yixing Environmental Monitoring Station,Yixing,Jiangsu 214200,China;2.Wuhan Planning & Design Institute,Wuhan,Hubei 430000,China;3.School of Energy and Environment,Southeast University,Nanjing,Jiangsu 210096,China
Abstract:
Feculent and anaerobic water aggregation (FAWA) is a type of specific environmental disaster with characteristics of occurring abruptly,lasting in short duration,and causing serious consequences on the environment and ecosystems.Experiments choosing algal density as the investigated object were carried out to analyze the parameters using data analysis software SPSS,including the water quality,temperature,and algal density,in four monitoring sites of the Yixing part where FAWA happened historically.An early warning model using the multiple regression theory was constructed based on the algal cell density together with weather conditions and related algal density threshold when FAWA happened in the past years.Based on the current weather data and real time water quality parameters in the monitoring site,the model could be used to evaluate the risk grade of FAWA occurring in the monitoring region.
Key words:  Multiple regression theory  Taihu Lake  Feculent and anaerobic water aggregation  Early warning model