引用本文:陈宇洁,陈志芳,邹丽,王厚俊.基于哨兵-2 MSI数据的高邮湖水体叶绿素a浓度和总悬浮物浓度遥感反演[J].环境监控与预警,2024,16(6):21-28
CHEN Yujie, CHEN Zhifang, ZOU Li, WANG Houjun.Remote Sensing Inversion of Chlorophyll-a Concentration and Total Suspended Matter Concentration in Gaoyou Lake Based on Sentinel-2 MSI Data[J].Environmental Monitoring and Forewarning,2024,16(6):21-28
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 244次   下载 60 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于哨兵-2 MSI数据的高邮湖水体叶绿素a浓度和总悬浮物浓度遥感反演
陈宇洁,陈志芳,邹丽,王厚俊
江苏省扬州环境监测中心,江苏 扬州 225009
摘要:
哨兵-2号卫星多光谱成像仪(MSI)数据的空间分辨率高,重访周期短,适用于高邮湖这类中小型湖泊的水质反演。利用实测水体光谱数据模拟出哨兵-2 MSI数据,并建立了适用于该数据在高邮湖反演叶绿素a(Chl.a)浓度和总悬浮物(TSM)浓度的模型。经过验证,Chl.a 的反演均方根误差(RMSE)为8.02 μg/L,平均相对误差(MRE)为18.4%,TSM的反演RMSE为16.2 mg/L,MRE为23.3%,表明该模型具备理想的反演精度。利用哨兵-2 MSI数据和建立的反演模型,可以获得高邮湖Chl.a 和TSM时空分布情况。初步分析发现,高邮湖这2项水质参数的分布与湖内的围网养殖和入湖径流之间存在一定关系。
关键词:  高邮湖  叶绿素a浓度  总悬浮物浓度  遥感反演  哨兵-2号卫星  多光谱成像仪数据
DOI:DOI:10.3969/j.issn.1674-6732.2024.06.004
分类号:X87
基金项目:江苏省环境监测科研基金项目(1815,2217);扬州市科学技术局基金项目(YZ2022073)
Remote Sensing Inversion of Chlorophyll-a Concentration and Total Suspended Matter Concentration in Gaoyou Lake Based on Sentinel-2 MSI Data
CHEN Yujie, CHEN Zhifang, ZOU Li, WANG Houjun
Jiangsu Provincial Yangzhou Environmental Monitoring Center,Yangzhou,Jiangsu 225009,China
Abstract:
The high spatial resolution and short revisit cycle of Sentinel 2 multispectral imager(MSI) data make it highly suitable for water quality inversion in small to medium sized lakes like Gaoyou Lake. In this study, we fitted the Sentinel-2 MSI data with measured water spectra to establish models for chlorophyll-a concentration(Chl.a) and total suspended matter(TSM) concentration inversion in Gaoyou Lake. After verification, the root mean square error(RMSE) of Chla inversion was found to be 8.02 μg/L with a mean relative error(MRE) of 18.4%, while the RMSE of TSM concentration inversion was 16.2 mg/L with an MRE of 23.3%, indicating excellent accuracy of this model. By utilizing Sentinel-2 MSI satellite imagery along with this established inversion model, we can obtain spatiotemporal distributions of Chla and TSM concentration in Gaoyou Lake. Preliminary analysis revealed that these two water quality parameters are influenced by net farming activities and runoff into the lake.
Key words:  Gaoyou Lake  Chlorophyll-a concentration  Total suspended matter concentration  Remote sensing  Sentinel-2  Multispectral imager data