引用本文:.The?Research?of?Extended?State?Variable?Method?in?Ensemble Kalman?Filter?for?Estimating?Uncertain?Parameters?in?Pollution?Model[J].Environmental Monitoring and Forewarning,2012,4(3):36~56
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 13433次   下载 4135 本文二维码信息
码上扫一扫!
分享到: 微信 更多
污染模型中参数订正的集合Kalman滤波扩展状态变量法
吴祝慧,韩月琪,王成林,黄娟,1,2,3
1.金陵科技学院基础部,江苏 南京 211169;2.解放军理工大学气象学院,江苏 南京 211101;3.江苏省环境监测中心,江苏 南京 210036
摘要:
污染模型中不确定参数的精确订正对于提高模型的精度有着重要的意义。在集合Kalman滤波(EnKF)同化方法的基础上,提出了对模型中不确定参数进行订正的EnKF扩展状态变量法,将不确定参数看成和模型状态变量一样的量,根据观测资料对不确定变量进行订正,以达到订正参数的目的。采用一个简化的空气质量方程,对模型参数订正方案进行检验,结果证明,提出的方案可行和有效。同时发现,随着观测资料精度的提高,无论是参数还是模型的状态变量,估计分析值的精度也得到相应的提高。
关键词:  污染模型  参数订正  集合Kalman滤波  扩展状态变量法
DOI:
分类号:
基金项目:国家自然科学基金项目(40805046);江苏省自然科学基金项目(BK2010128);公益性行业(气象)专项课题(GYHY(QX)2007-06-15,GYHY200906009)
The?Research?of?Extended?State?Variable?Method?in?Ensemble Kalman?Filter?for?Estimating?Uncertain?Parameters?in?Pollution?Model
Abstract:
The?exact?estimation?of?uncertain?parameters?in?pollution?model?makes?great?sense?in?enhancing?the?precision?of?numerical?model.?The?method?of?extended?state?variable?based?on?Ensemble?Kalman?Filter?(EnKF)?is?introduced?to?estimate?the?uncertain?parameters.?That?is?the?uncertain?parameters?as?the?model?state?variables?that?can?be?corrected?by?observational?data.?A?simple?quality?equation?of?air?is?used?to?test?the?method?of?correcting?model?parameters.?The?results?of?experiment?show?that?the?method?is?feasible?and?effective.?At?the?same?time,?the?precision?of?estimated?value?of?parameters?and?state?variables?is?improved?with?the?elevation?of?the?observational?data’s?precision.
Key words:  pollution?model  ?Parameter?estimation  ?Ensemble?Kalman?Filter  ?Extended?state?variable?method