引用本文:DENG Shudan,HU Litiao,LIU Riyang,GAO Ming,SHAO Yanchuan,MA Zongwei.Revealing Drivers of PM2.5 Pollution Events by Explainable Machine Learning[J].Environmental Monitoring and Forewarning,2025,17(1):35~42
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 7510次   下载 175 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于可解释性机器学习的PM2.5重污染事件驱动因素识别
邓淑丹1,胡丽条1,刘日阳1,高鸣2,邵彦川1,马宗伟1*
1. 南京大学环境学院,污染控制与资源化研究国家重点实验室,江苏 南京 210023;2. 江苏环保产业技术研究院股份公司,江苏 南京 210036
摘要:
细颗粒物(PM2.5)污染对人体健康和社会经济均有负面影响,为了解PM2.5 重污染事件形成的关键驱动因素,利用气象参数和大气污染物排放清单数据构建随机森林模型,模拟长三角地区2017年冬季4次重污染事件中的PM2.5质量浓度,并借助沙普利加和解释(SHAP)机器学习方法识别重污染事件的驱动因素。研究结果表明,气象要素对重污染事件中ρ(PM2.5)有着复杂的影响,其中降水量、地表净太阳辐射和露点温度都是影响4次重污染事件中ρ(PM2.5)的重要气象驱动因素;一次排放污染物中,交通源排放的二氧化硫(SO2)、农业源排放的氨气(NH3)和溶剂使用排放的挥发性有机物(VOCs)对ρ(PM2.5)也有较为重要的影响。
关键词:  细颗粒物污染  驱动因素  可解释性  机器学习  沙普利加和解释
DOI:DOI:10.3969/j.issn.1674-6732.2025.01.006
分类号:X823
基金项目:国家自然科学基金项目(72234003,71921003)
Revealing Drivers of PM2.5 Pollution Events by Explainable Machine Learning
DENG Shudan1, HU Litiao1, LIU Riyang1, GAO Ming2, SHAO Yanchuan1, MA Zongwei1*
1. State Key Lab of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; 2. Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing, Jiangsu 210036, China
Abstract:
PM2.5 pollution has serious negative impacts on human health, society, and economy. In order to develop more effective control plans for PM2.5 pollution, ensure the health of the people, and promote sustainable development of the environment, it is crucial to understand the key driving factors behind the formation of PM2.5 pollution events. In this study, we constructed a random forest model using meteorological parameters and atmospheric pollutant emission inventory data to simulate the PM2.5 concentration during the 2017 winter pollution events in the Yangtze River Delta region, and identified the driving factors of heavy pollution events using SHAP(SHapley Additive exPlanations) explainable machine learning. The research results indicate that meteorological factors have a complex impact on PM2.5 concentration in heavy pollution events, among which precipitation, surface net solar radiation, and dew point temperature are important meteorological driving factors; SO2 emissions from transportation sources, NH3 emissions from agricultural sources, and VOCs emissions from solvent use also have a significant impact on PM2.5 concentration.
Key words:  PM2.5 pollution  Driving factors  Explainability  Machine learning  SHAP