引用本文:MENG Yiqing,WU Xiaodong,LI Bing,GUAN Jiajun.Smoky Vehicle Detection Algorithm Based on Improved YOLOv5s Research[J].Environmental Monitoring and Forewarning,2024,16(4):73~80
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1810次   下载 1113 本文二维码信息
码上扫一扫!
分享到: 微信 更多
改进YOLOv5s的黑烟车辆检测算法研究
孟艺箐1,吴晓东1*,李冰2,管嘉俊1
1.东北林业大学,土木与交通学院,黑龙江 哈尔滨 150040; 2.东北林业大学,机电工程学院,黑龙江 哈尔滨 150040
摘要:
针对当前视觉黑烟车辆检测精度低、小目标难以检测的问题,提出改进YOLOv5s的黑烟车辆检测算法。首先,基于公开网络数据和真实道路拍摄图像构建黑烟车辆数据集,解决数据集受限问题。其次,改进网络模型,添加预测层,提高模型对小目标的检测性能,引入坐标注意力(Coordinate Attention,CA),增强模型的特征提取能力,进一步提高检测精度。最后,改进边界框回归损失函数为GIoU,提高边界框定位精度。实验结果表明,该改进模型能够有效地检测远距离小目标,改善漏报和虚警等问题。与原始YOLOv5s模型相比,该改进模型平均检测精度(mAP)提高3.1%,黑烟类别检测精度(AP)提高4.9%,在小目标场景中表现出较强的泛化能力。
关键词:  深度学习  YOLOv5s  黑烟车辆检测  小目标检测  大气环境监测
DOI:DOI:10.3969/j.issn.1674-6732.2024.04.008
分类号:X831
基金项目:黑龙江省自然科学基金基项目(E2017001);国家重点研发计划(2017YFC0803901-2)
Smoky Vehicle Detection Algorithm Based on Improved YOLOv5s Research
MENG Yiqing1, WU Xiaodong1*, LI Bing2, GUAN Jiajun1
1.School of Civil Engineering and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040,China; 2.School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040,China
Abstract:
An improved YOLOv5s algorithm of smoky vehicle detection has been established to address the issue of low resolution and too small target to test. Firstly, the smoke vehicle dataset is constructed using public network data and real road photography to solve the problem of a limited dataset. Secondly, the introduction of Coordinate has further optimized the model. In addition, the paper introduces Coordinate and improves the regression loss function of the bounding box into GIOU to improve the location precision of the bounding box. Experiments show that the proposed model is effective in detecting small targets over a long distance, and it can solve the problem of false negative and false alarm. A comparison with the original YOLOv5s model reveals an increase of 3.1% in the average detection accuracy(mAP) and a 4.9% enhancement in the detection accuracy of the black smoke category(AP), the model exhibits strong generalization ability in small target scenarios.
Key words:  Deep learning  YOLOv5s  Smoke detection  Small target detection  Atmospheric environment monitoring