炔雌醇(EE2)是一种人工合成类固醇雌激素,具有极强的雌激素效应,是典型环境内分泌干扰物(EDCs)。研究表明,在ng/L水平时,EE2便能引起鱼类生理紊乱,以及家畜和野生动物生殖功能障碍[1-2],并可导致人类出生缺陷、神经或发育障碍、性器官畸形、不良免疫影响、乳腺癌以及其他急性和慢性疾病影响[3-4],对生态系统和人类健康构成严重威胁。2015年欧盟将EE2列入水框架指令(WFD) 观察清单,并将其环境质量浓度限值定为0.035 ng/L,远低于天然雌激素雌酮(0.4 ng/L)和17β-雌二醇(0.4 ng/L)[5]。
EE2常用于药物和激素替代治疗,由于其在人体中的不完全代谢(<20%),仅口服避孕药用途的排放量就达700 kg/a[1]。EE2具有生物难降解性,污水中超过60%的EE2可能进入临近地表水[6-9]。研究表明,EE2在地表水[10]中广泛存在,在地下水[11-13]和饮用水[14-16]中也已检测到了游离态EE2。鉴于EE2作为一种新污染物已对环境构成了严重威胁,且城市污水处理厂是其污染的重要点源,现围绕EE2的危害、污水处理厂去除及微生物降解情况,对当前相关研究进展进行综述,以期为EE2的风险评估与控制提供参考。
1 EE2的危害EE2是由雌二醇在C17位添加了乙炔基改造而来(图 1),相较于母体天然雌激素,EE2结构更加稳定,且雌激素效力更强[17]。据统计,2015—2020年全球51个国家和地区发表的145篇关于类固醇雌激素[雌酮(E1)、雌二醇(E2)、雌三醇(E3)和EE2等]的文章中,绝大多数学者认为EE2的风险商(RQ)最高[18]。EE2引起更高环境风险的主要因素包括环境持久性、生物累积性和高生物毒性。在环境持久性方面,与天然雌激素E2相比,合成雌激素EE2具有更长的半衰期,例如在有氧条件下的地下水系统(含水层沉积物和地下水)中,E2和EE2的半衰期分别为2和81 d[19]。在生物累积性方面,EE2是亲脂性化合物,尽管在水体中浓度较低,但可通过生物积累和放大作用对生物体产生毒害作用[8]。研究表明,中国每人每天通过食用贝类摄入EE2可达5.5 μg,远超世界卫生组织(3 μg)、美国(0.007 μg)和澳大利亚(0.002 6 μg)规定的每日可接受摄入量(ADI)[20]。在生物毒性方面,EE2具有极强的雌激素受体亲和力,以E2雌激素效力(EP)作为度量标准(E2的EP为1),在不同体外生物测试中,EE2的EP为1.19~1.50[21-22],导致EE2具有较强的慢性毒性,对水生生物的预测无效应质量浓度(PNEC)低至0.1~0.5 ng/L[23-24],而地表水及城市污水中的EE2质量浓度通常在ng/L水平[25],因而存在显著的生态风险。
大量研究发现,EE2可干扰与水生生物生殖功能相关的多个过程,例如诱导雄性产生卵黄蛋白原(VTG) [26],增加VTG和雌激素受体mRNA的表达[27],减小睾丸大小,诱导出现雌雄间性(即双性),对雄性性腺发育产生负面影响[28-31]。此外,EE2还会影响斑马鱼的游泳行为[32],增加攻击性和降低社会偏好[33],降低精子活力[34],诱导氧化应激反应[35]。EE2暴露还可使子代畸形率和发育异常率升高[36],导致鱼类生物量大幅减少,甚至中断水生食物链[37]。例如,一项长达7 a的野外实地研究将湖泊中的胖头鲦鱼种群暴露于5~6 ng/L的EE2中,最终导致了该种群的崩溃[38]。
与EE2相关的人类或野生哺乳动物健康风险研究相对较少。值得一提的是,在某种程度上,EE2可以模仿内源性雌激素作用或干扰雌激素信号通路,进而影响人体的生长、发育和繁殖过程[39-40]。研究表明,男性内源性雌激素可能导致精子数量降低、男性女性化和男性生殖系统紊乱[41-42]。此外,女性乳腺癌和男性前列腺癌发病率的增加与终生接触雌激素活性化合物有关[43-44]。鉴于EE2对人体健康的严重危害,美国国家毒理学计划已将其列为致癌物[45],我国在2015年的《水污染防治行动计划》中也提出严格控制环境激素类化学品污染[46]。
2 EE2在污水处理厂中的去除人类排泄物是城市污水中EE2的主要来源,目前普遍认为,污水中EE2的浓度水平与人口密集程度存在密切联系。城市污水处理厂作为城市人口密集区域重要的基础设施,在控制EE2环境影响方面发挥着重要作用[47-48]。然而,城市污水处理厂现有工艺(厌氧/缺氧/好氧工艺)并不能完全消除雌激素的生态风险。有研究表明,北京的3个城市污水处理厂出水的雌激素质量浓度为3.2~ 45.6 ng/L(换算为E2当量),显著高于欧洲城市污水处理厂出水水平,其中EE2的贡献当量高达34.8%[49]。
传统城市污水处理厂普遍针对常规污染物的去除进行工艺设计,而包括EE2在内的EDCs具有环境浓度低、生物持久性强等特点,因此去除效率较低[50]。据统计,全球282个城市污水处理厂的EE2去除率平均仅为68.3%[51]。此外,不同城市污水处理厂报道的EE2去除率也具有明显差异。例如,有研究表明EE2在污水处理厂中的去除效率甚至高达100%[52-53],而另一些研究则发现EE2几乎无法去除[54-56]。这与当地城市污水处理厂的进水水质条件、污水处理工艺、温度、水力停留时间(HRT)和污泥停留时间(SRT)等工艺参数密切相关[57]。事实上,城市污水处理厂排放的EE2已成为大多数国家地表水环境中雌激素污染的重要来源,提高城市污水处理厂的EE2去除率迫在眉睫[51]。
典型城市污水处理厂由初级、一级、二级和三级处理单元组成。EE2在城市污水处理厂中的去除途径包括物理吸附、微生物降解和化学氧化等。少数研究认为EE2主要通过吸附去除[58],而当污泥处于碱性条件(pH值>9)或离子浓度过高(>0.4 mol/L)时,EE2的平衡吸附量会大大减小[59-60]。也有数据显示,城市污水处理厂中只有<2%的EE2被活性污泥吸附[61]。有研究认为,EE2在水体中可直接吸收太阳光或经由敏化剂(离子络合物和溶解性有机质)介导而发生光降解[62-63],然而,可见光降解去除EE2的效率较低,半衰期长达75 d[64]。此外,EE2的亨利定律常数(kH)仅为3.8 × 10-7 Pa·m3/mol,远低于kH在103 Pa·m3/mol范围内的挥发性有机物(氯代烃、芳烃等),因此其挥发去除量微乎其微[65]。相比之下,微生物降解对EE2去除的贡献更高[66-67]。一项研究对比了英国不同城市污水处理厂对EE2等雌激素类化合物的去除效率,结果表明EE2的去除主要发生在生物处理阶段(41%~100%),且不同处理工艺的去除能力存在差异,按去除效率排序依次为活性污泥>氧化沟>生物滤池>旋转生物接触器,此外,长污泥龄和高硝化速率可显著提升EE2的去除率[68]。SRT和HRT被认为是生物处理过程中去除雌激素类化合物的重要参数。目前普遍认为,较长的SRT可以提高生物反应器中生长缓慢细菌的生物量,促进多样性微生物群落的建立,并可能诱导出能够有效利用低浓度EDCs的“多食性”菌属,即同时代谢几十种不同碳源,以弥补碳底物浓度的不足,从而提高EE2等微污染物的去除率[2, 69-70]。例如,有研究表明,当SRT>10 d时,类固醇雌激素的生物降解率>70%;而当SRT>20 d时,降解率>80%[71]。氧化还原条件(厌氧、缺氧和好氧)也对EE2的生物降解产生影响。在厌氧-缺氧-好氧活性污泥系统中,观察到EE2在厌氧条件下积累[72],在好氧条件下明显降解[55]。
污水处理厂的深度处理工艺(超滤、吸附、高级氧化等)对EE2等难降解有机物具有较高的去除效率[65, 73-74]。例如,使用超滤或砂滤等过滤技术,EE2等类固醇雌激素的平均去除率可由二级生物处理后的78.7%提升至96.1%[49];臭氧氧化可有效去除活性污泥处理后的类固醇残留物,将其质量浓度降至不足1 ng/L[75];活性炭吸附对EE2的去除率>90%(初始质量浓度为10 ng/L)[76];电化学氧化与二级生物处理联用对EE2的去除率接近100%(初始质量浓度为100 μg/L)[77]。然而,这些深度处理工艺存在成本高、易产生二次污染等弊端[78],相比之下,具有经济、高效且环境友好等优势的二级生物处理方法因其高普及率,仍是城市污水中EE2的主要去除途径。
3 EE2的微生物降解微生物降解是污水处理厂EE2等类固醇雌激素去除的主要途径[79-80]。在活性污泥中,EE2的生物降解主要有异养代谢和共代谢2种机制。对于异养代谢机制,活性污泥系统中的微生物以目标化合物为碳源和能源维持其生物量,并产生相关的酶用于氧化/还原反应;共代谢则指在生长底物存在的情况下,非生长底物的转化,共代谢过程中产生的非特异性酶可促进难降解有机物的降解[81-82]。根据参与共代谢微生物的营养类型,共代谢机制主要分为自养共代谢(以硝化共代谢为代表)和异养共代谢。现对EE2微生物降解的代表性研究成果进行了总结,见表 1。
不同于E1、E2和E3等天然雌激素存在多种降解功能菌[79, 100-103],截至目前仅有3种菌被明确报道了能够以EE2为唯一碳源和能源生长,分别为分层镰刀菌(Fusarium proliferatum HNS-1)、鞘氨醇杆菌(Sphingobacterium sp. JCR5)和红串红球菌(Rhodococcus erythropolis)(表 1)。
从牛舍样品中分离培养的分层镰刀菌是最早被报道能以EE2为唯一碳源的微生物,可在15 d内去除97%的EE2(初始质量浓度为25 mg/L),降解速率常数为0.6 d-1[83]。然而,分层镰刀菌并不能彻底矿化EE2,而是将其转化成一种极性较强的未知产物。Ren等[84]从活性污泥中分离出的鞘氨醇杆菌能够分别以多种甾体类雌激素(E1、E2、E3、EE2等)为唯一碳源生长,当EE2的初始质量浓度为30 mg/L时,10 d内去除率可达87%,降解产物包括2种开环物质(2-羟基-2,4-二烯戊酸和2-羟基-2,4-二烯-1,6-二元酸)。相比之下,红串红球菌对EE2的降解能力较弱,75 h内对EE2的去除率<10%(初始质量浓度为1.4 mg/L)[85]。
Yoshimoto等[94]从活性污泥中分离培养出了4株具有高效EE2降解能力的红球菌属,其中佐普菲红球菌(Rhodococcus zopfii Y50158)的EE2降解能力最强,6 h内即可降解70%的EE2(初始质量浓度为100 mg/L),24 h内可完全去除EE2;其余3种菌属被鉴定为马红球菌(Rhodococcus equi),其在24 h内对EE2的降解率分别为80%,80%和96%。然而,Yoshimoto等使用甲醇作为EE2母液的溶剂,导致实验体系中的甲醇质量浓度高达约3.16 g/L,从而无法判断这4种红球菌属能否将EE2作为唯一碳源。
微生物能够直接利用的化合物通常对微生物生长无毒害作用,且具有足够高的浓度以维持其生物量,以诱导降解过程中相关酶或辅助因子的产生[104]。而EE2在城市污水处理厂中的质量浓度仅为ng/L级别,难以成为微生物的碳源被利用。因此,许多研究者认为,在活性污泥系统中,微生物的直接异养代谢降解并非去除EE2的主要途径[90, 93]。
3.2 EE2的硝化共代谢降解硝化反应是城市污水处理厂生物脱氮的关键反应过程,其中,自养硝化菌中的氨氧化菌(AOB)参与的氨氧化反应过程与EE2的生物转化存在密切关联。研究表明,相较于传统活性污泥(对EE2的去除率为31%~71%[105-106]),富集了AOB的硝化活性污泥(NAS)显示出对EE2更好的降解效果(表 1)。例如,De Gusseme等[86]发现NAS对模拟污水和实际污水中EE2的去除率均>94% (初始质量浓度为750 μg/L),但从该NAS中分离培养的异养微生物对EE2无显著降解作用。另一项研究表明,NAS的硝化活性与EE2降解速率之间存在线性正相关关系[87]。而使用烯丙基硫脲(ATU)抑制NAS的氨氧化活性后,其对EE2降解能力大幅下降[89]。例如,在NAS进水中加入5 mg/L ATU后,出水中氨氮和EE2的浓度显著上升,证明其氨氧化活性和EE2降解能力均受到抑制[99]。另一项研究中,在NAS进水中添加10 mg/L ATU导致EE2的一级降解动力学常数由0.059 h-1大幅下降至0.008 5 h-1[88]。
AOB在EE2的共代谢转化中发挥着关键作用[107]。例如,EE2的去除率随着膜-生物反应器(MBR)中AOB丰度的升高而升高[89];实验室纯培养的氨氧化菌——欧洲亚硝化单胞菌已被证明可以利用NH4+-N转化EE2[88, 91-92]。作为AOB的生长底物,NH4+-N的浓度水平对于EE2的转化有着关键影响。近期一项研究认为,欧洲亚硝化单胞菌的EE2生物转化过程需要NH4+-N提供足够的还原力激活[约(0.95 ± 0.06) mol /L NADH(还原型辅酶Ⅰ)][93]。一些研究认为,硝化过程产生的活性氮物种,如二氧化氮(NO2)、一氧化氮(NO)、羟氨(NH2OH)等,可以通过非生物途径转化EE2,但其转化能力尚存争议[91, 108-109]。因此,目前的研究表明,仅依靠硝化共代谢无法矿化EE2,其降解产物仍具有生态风险[85, 92-93]。
3.3 EE2的异养共代谢降解异养共代谢在难降解污染物的去除中发挥着重要作用。有机底物,如蔗糖[110-111]、甲醇[112]、淀粉[113-114]、乙酸钠[115]、葡萄糖[116]可作为共代谢碳源增加多种难降解有机物的去除。目前对具有直接降解EE2能力的降解菌的报道还比较少,而对外加碳源情况下EE2降解能力的研究相对较多(表 1)。例如,O'Grady等[85]探究了自活性污泥分离的4种红球菌(红串红球菌、马红球菌、玫瑰红球菌和佐普菲红球菌)分别在己二酸和葡萄糖作为共代谢底物时对EE2的降解能力,其中红串红球菌通过共代谢底物己二酸将EE2去除率由10%显著提升至47%,产物包括苯酚和一种分子质量较高的未知产物,而其余菌株则只有在共代谢底物存在时才具备EE2降解性能。Larcher等[97]研究了7种已报道的EE2降解菌的降解性能,在添加0.5%乙醇作为共代谢底物后,这些降解菌在48 h内对EE2的降解率在21%~100%。
微生物通过异养共代谢去除EDCs等微污染物的能力受生长底物种类和浓度影响[110, 117]。对于生长底物的性质而言,其种类不同所导致的EE2降解率也不同。例如,以蛋白胨和葡萄糖为共代谢底物时,活性污泥对EE2的去除率分别为81%和35%[98];对于生长底物的浓度而言,过高或者过低均不利于EE2的去除。例如,Pauwels等[96]从堆肥中分离得到的菌株能够在代谢E1、E2和E3时共代谢EE2(初始质量浓度为ng/L~μg/L),但只有在天然雌激素水平足够高时(>1 mg/L),EE2才有机会被共代谢。活性污泥的EE2降解率随COD负荷增加(200~600 mg/L)而减少(84%~ 67%)[89]。
3.4 微生物协同降解EE2由于依靠单一降解菌往往不能实现EE2的最终矿化,其产物可能仍具有生态风险[85, 92, 99],因此对于EE2的无害化处理,需要多种微生物的协同降解作用。已有研究表明,AOB等自养菌与异养菌可通过协同作用强化EE2的生物转化。例如,Khunjar等[99]将AOB纯菌与经过驯化的异养菌群(使用苯甲酸、甲苯、乙酸的混合物培养得到的具有高加氧酶活性的好氧活性污泥)进行串联处理EE2,结果显示,与AOB单独处理相比,串联组的EE2去除率由30%提高至80%,并且AOB产生的降解产物4-OH-EE2、4-nitro-EE2和2-nitro-EE2在串联后全部去除。相关研究认为,NAS中AOB的EE2转化速率高于其他异养菌,但EE2及其硝化共代谢产物的矿化过程仍需要异养菌参与才能完成[65, 118]。此外,提高活性污泥系统的生物多样性也是提升EE2降解效率的途径之一。例如,相较于NAS,硝化颗粒污泥由于生物多样性和异养功能物种的增加,对EE2的降解效率也更高[90]。这表明2类微生物可能通过协同作用增强EE2的生物转化。在实际污水处理过程中,EE2的生物降解仍是一个复杂的反应黑箱,其转化途径可能同时包含代谢和共代谢(硝化共代谢和异养共代谢)过程。目前普遍认为,大多数污染物降解菌株与多物种群落具有复杂的相互关系,通过多成员代谢网络的协同作用可以实现痕量难降解有机物的生物降解[119-120]。
3.5 EE2的降解功能基因目前,有关类固醇激素的细菌降解路径及降解功能基因已有大量研究(如4,5-SECO途径)[121],但是针对EE2的相关研究较少。对于异养菌,Peng等[95]从具有EE2降解能力的测序菌株香茅醇假单胞菌(Pseudomonas citronellolis SJTE-3)中发现,其编码的短链脱氢酶基因sdr3、膜转运蛋白基因yjcH和细胞色素P450羟化酶基因cyp2与EE2的生物降解高度相关。由于AOB所诱导的难降解有机物的共代谢过程被广泛证实,编码行使氨氧化功能的氨单加氧酶(AMO)的功能基因受到了学者关注[122]。它们包括负责将NH4+转化为NH2OH的amoA(编码A亚基)、amoB(编码B亚基)、amoC(编码C亚基)。此外,有学者认为一些活性氮物种(NO2、NO、NH2OH等)可能参与EE2的非生物转化[91, 108-109],因此,负责将NH2OH转化为NO2-的羟胺脱氢酶基因hao以及负责将NO2-转化为NO3-的亚硝酸盐氧化还原酶基因nxrA(编码α亚基)、nxrB(编码β亚基)也应当受到关注[123]。然而,目前的文献调研,尚无针对城市污水处理厂好氧活性污泥系统中EE2降解功能基因的研究;已经提出的天然雌激素的降解基因和矿化路径(如4,5-SECO途径、HIP途径等)尚未证实适用于EE2的生物降解[121]。
4 总结与展望(1) EE2在低质量浓度水平(ng/L)即可表现出显著的雌激素效应,会对水生生物的生殖发育造成影响。EE2在自然水体中表现出的半衰期长、迁移能力强以及易于生物积累等特性,使其易于通过食物链进入人体,对人体健康产生严重威胁。未来应当加强对EE2的环境监测,建立健全监管制度。
(2) 城市污水处理厂是控制EE2风险的关键节点,然而现有污水处理厂对EE2的去除效率仍较低(平均68.3%)。生物处理段是EE2去除的主要环节,对EE2的去除效率与污水处理厂工艺和运行参数(HRT和SRT等)有关。引进深度处理工艺可有效提升EE2的去除效率,但面临着高成本和二次污染的风险,生物处理仍是最简单、环保且行之有效的方法。未来应在深度解析污水处理厂运行工艺、参数与EE2去除关联规律的基础上,不断优化工艺条件,以提升生物处理段对于EE2等痕量难降解有机物的去除效率。
(3) 污水处理厂中EE2的微生物降解机制包括异养代谢和共代谢机制。由于EE2在污水中痕量存在(ng/L~μg/L),共代谢是EE2的主要去除机制。硝化共代谢和异养共代谢机制均可以有效促进EE2的生物降解,然而,目前对于主导共代谢的功能菌群和功能基因的研究不足,未来需开展相关微生物学共代谢机制研究,为高效削减城市污水中的EE2提供理论依据。
[1] |
ADEEL M, SONG X M, WANG Y Y, et al. Environmental impact of estrogens on human, animal and plant life: A critical review[J]. Environment International, 2017, 99: 107-119. DOI:10.1016/j.envint.2016.12.010 |
[2] |
NGUYEN P Y, CARVALHO G, REIS M A M, et al. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes[J]. Water Research, 2021, 188: 135-163. |
[3] |
JUN B M, HWANG H S, HEO J, et al. Removal of selected endocrine-disrupting compounds using Al-based metal organic framework: Performance and mechanism of competitive adsorption[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 345-352. DOI:10.1016/j.jiec.2019.07.009 |
[4] |
ZHANG H, SHI J H, LIU X W, et al. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J]. Water Research, 2014, 58: 248-257. DOI:10.1016/j.watres.2014.03.074 |
[5] |
Official Journal of The European Union. Commission implementing decision (EU) 2015/495 of 20 March 2015 [EB/OL]. (2015-03-20)[2023-04-18]. http://data.europa.eu/eli/dec_impl/2015/495/oj
.
|
[6] |
ZHOU Y Q, ZHA J M, XU Y P, et al. Occurrences of six steroid estrogens from different effluents in Beijing, China[J]. Environmental Monitoring and Assessment, 2012, 184(3): 1719-1729. DOI:10.1007/s10661-011-2073-z |
[7] |
KABIR E R, RAHMAN M S, RAHMAN I. A review on endocrine disruptors and their possible impacts on human health[J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 241-258. DOI:10.1016/j.etap.2015.06.009 |
[8] |
DOS SANTOS C R, ARCANJO G S, SANTOS L V D, et al. Aquatic concentration and risk assessment of pharmaceutically active compounds in the environment[J]. Environmental Pollution, 2021, 290: 118-129. |
[9] |
JUNG C, SON A, HER N, et al. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 1-11. DOI:10.1016/j.jiec.2014.12.035 |
[10] |
ODINGA E S, ZHOU X, MBAO E O, et al. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices[J]. Chemosphere, 2022, 308: 698-732. |
[11] |
LI Z, XIANG X, LI M, et al. Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China[J]. Ecotoxicology and Environmental Safety, 2015, 119: 74-80. DOI:10.1016/j.ecoenv.2015.04.031 |
[12] |
KAPELEWSKA J, KOTOWSKA U, KARPINSKA J, et al. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters[J]. Microchemical Journal, 2018, 137: 292-301. DOI:10.1016/j.microc.2017.11.008 |
[13] |
SONG X, WEN Y, WANG Y, et al. Environmental risk assessment of the emerging EDCs contaminants from rural soil and aqueous sources: Analytical and modelling approaches[J]. Chemosphere, 2018, 198: 546-555. DOI:10.1016/j.chemosphere.2018.01.060 |
[14] |
BENOTTI M J, TRENHOLM R A, VANDERFORD B J, et al. Pharmaceuticals and endocrine disrupting compounds in US drinking water[J]. Environmental Science & Technology, 2009, 43(3): 597-603. |
[15] |
FAN Z L, HU J Y, AN W, et al. Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: Comparison to the parent compounds[J]. Environmental Science & Technology, 2013, 47(19): 10841-10850. |
[16] |
VILELA C L S, BASSIN J P, PEIXOTO R S. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection[J]. Environmental Pollution, 2018, 235: 546-559. DOI:10.1016/j.envpol.2017.12.098 |
[17] |
CLOUZOT L, MARROT B, DOUMENQ P, et al. 17 alpha-ethinylestradiol: An endocrine disrupter of great concern. analytical methods and removal processes applied to water purification: A review[J]. Environmental Progress, 2008, 27(3): 383-396. DOI:10.1002/ep.10291 |
[18] |
DU B H, FAN G D, YU W W, et al. Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective[J]. Environmental Pollution, 2020, 267: 745-798. |
[19] |
YING G G, KOOKANA R S, DILLON P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material[J]. Water Research, 2003, 37(15): 3785-3791. DOI:10.1016/S0043-1354(03)00261-6 |
[20] |
CHIU J M Y, PO B H K, DEGGER N, et al. Contamination and risk implications of endocrine disrupting chemicals along the coastline of China: A systematic study using mussels and semipermeable membrane devices[J]. Science of the Total Environment, 2018, 624: 1298-1307. DOI:10.1016/j.scitotenv.2017.12.214 |
[21] |
BEEK I C, BRUHN R, GANDRASS J. Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen[J]. Chemosphere, 2006, 63(11): 1870-1878. DOI:10.1016/j.chemosphere.2005.10.022 |
[22] |
LIU Z H, KANJO Y, MIZUTANI S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—physical means, biodegradation, and chemical advanced oxidation: A review[J]. Science of the Total Environment, 2009, 407(2): 731-748. DOI:10.1016/j.scitotenv.2008.08.039 |
[23] |
CALDWELL D J, MASTROCCO F, ANDERSON P D, et al. Predicted-no-effect concentrations for the steroid estrogens estrone, 17 beta-estradiol, estriol, and 17 alpha-ethinylestradiol[J]. Environmental Toxicology and Chemistry, 2012, 31(6): 1396-1406. DOI:10.1002/etc.1825 |
[24] |
LAURENSON J P, BLOOM R A, PAGE S, et al. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: A review of recent risk assessment data[J]. Aaps Journal, 2014, 16(2): 299-310. DOI:10.1208/s12248-014-9561-3 |
[25] |
YANG S, YU W W, YANG L, et al. Occurrence and fate of steroid estrogens in a Chinese typical concentrated dairy farm and slurry irrigated soil[J]. Journal of Agricultural and Food Chemistry, 2021, 69(1): 67-77. DOI:10.1021/acs.jafc.0c05068 |
[26] |
ANDREW M N, DUNSTAN R H, O'CONNOR W A, et al. Effects of 4-nonylphenol and 17 alpha-ethynylestradiol exposure in the Sydney rock oyster, Saccostrea glomerata: Vitellogenin induction and gonadal development[J]. Aquatic Toxicology, 2008, 88(1): 39-47. DOI:10.1016/j.aquatox.2008.03.003 |
[27] |
CIOCAN C M, CUBERO-LEON E, PUINEAN A M, et al. Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis[J]. Environmental Pollution, 2010, 158(9): 2977-2984. DOI:10.1016/j.envpol.2010.05.025 |
[28] |
TETREAULT G R, BENNETT C J, SHIRES K, et al. Intersex and reproductive impairment of wild fish exposed to multiple municipal wastewater discharges[J]. Aquatic Toxicology, 2011, 104(3-4): 278-290. DOI:10.1016/j.aquatox.2011.05.008 |
[29] |
CAPOLUPO M, DIAZ-GARDUNO B, MARTIN-DIAZ M L. The impact of propranolol, 17-ethinylestradiol, and gemfibrozil on early life stages of marine organisms: Effects and risk assessment[J]. Environmental Science and Pollution Research, 2018, 25(32): 32196-32209. DOI:10.1007/s11356-018-3185-6 |
[30] |
BLALOCK B J, ROBINSON W E, LOGUINOV A, et al. Transcriptomic and network analyses reveal mechanistic-based biomarkers of endocrine disruption in the marine mussel, mytilus edulis[J]. Environmental Science & Technology, 2018, 52(16): 9419-9430. |
[31] |
DJEBBI E, YAHIA M N D, FARCY E, et al. Acute and chronic toxicity assessments of 17 beta-estradiol (E-2) and 17 alpha-ethinylestradiol (EE2) on the calanoid copepod Acartia clausi: Effects on survival, development, sex-ratio and reproduction[J]. Science of the Total Environment, 2022, 807: 1258-1296. |
[32] |
WU S M, TSENG Y J, CHEN T H. Maternal effect and dietary supplementation of estradiol-17 beta on female zebrafish (Danio rerio) affects the swimming behavior and stress-coping styles of its offspring[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2022, 252: 451-489. |
[33] |
FENSKE L, CONCATO A C, VANIN A P, et al. 17-alpha-Ethinylestradiol modulates endocrine and behavioral responses to stress in zebrafish[J]. Environmental Science and Pollution Research, 2020, 27(23): 29341-29351. DOI:10.1007/s11356-020-09318-7 |
[34] |
QIN X, LAI K P, WU R S S, et al. Continuous 17a-ethinylestradiol exposure impairs the sperm quality of marine medaka (Oryzias melastigma)[J]. Marine Pollution Bulletin, 2022, 183: 123-130. |
[35] |
TAMAGNO W A, SOFIATTI J R D, ALVES C, et al. Synthetic estrogen bioaccumulates and changes the behavior and biochemical biomarkers in adult zebrafish[J]. Environmental Toxicology and Pharmacology, 2022, 92: 784-803. |
[36] |
TINGUELY S M, DAVID A, LANGE A, et al. Effects of maternal exposure to environmentally relevant concentrations of 17 alpha-ethinyloestradiol in a live bearing freshwater fish, Xenotoca eiseni (Cyprinodontiformes, Goodeidae)[J]. Aquatic Toxicology, 2021, 232: 635-698. |
[37] |
HALLGREN P, NICOLLE A, HANSSON L A, et al. Synthetic estrogen directly affects fish biomass and may indirectly disrupt aquatic food webs[J]. Environmental Toxicology and Chemistry, 2014, 33(4): 930-936. DOI:10.1002/etc.2528 |
[38] |
KIDD K A, BLANCHFIELD P J, MILLS K H, et al. Collapse of a fish population after exposure to a synthetic estrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21): 8897-8901. DOI:10.1073/pnas.0609568104 |
[39] |
FRYE C A, BO E, CALAMANDREI G, et al. Endocrine disrupters: A review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems[J]. Journal of Neuroendocrinology, 2012, 24(1): 144-159. DOI:10.1111/j.1365-2826.2011.02229.x |
[40] |
PELEKANOU V, LECLERCQ G. Recent insights into the effect of natural and environmental estrogens on mammary development and carcinogenesis[J]. International Journal of Developmental Biology, 2011, 55(7-9): 869-878. |
[41] |
BOLONG N, ISMAIL A F, SALIM M R, et al. A review of the effects of emerging contaminants in wastewater and options for their removal[J]. Desalination, 2009, 239(1-3): 229-246. DOI:10.1016/j.desal.2008.03.020 |
[42] |
SUMPTER J P, JOBLING S. The occurrence, causes, and consequences of estrogens in the aquatic environment[J]. Environmental Toxicology and Chemistry, 2013, 32(2): 249-251. DOI:10.1002/etc.2084 |
[43] |
MOORE S C, MATTHEWS C E, SHU X O, et al. Endogenous estrogens, estrogen metabolites, and breast cancer risk in postmenopausal Chinese women[J]. Jnci-Journal of the National Cancer Institute, 2016, 108(10): 2489-2512. |
[44] |
NELLES J L, HU W Y, PRINS G S. Estrogen action and prostate cancer[J]. Expert Review of Endocrinology & Metabolism, 2011, 6(3): 437-451. |
[45] |
LIANG J, SHANG Y F. Estrogen and cancer[M]. US: Annual Reviews, 2013: 225-240.
|
[46] |
YU W, DU B, YANG L, et al. Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment[J]. Environmental Science and Pollution Research, 2019, 26(10): 9443-9468. DOI:10.1007/s11356-019-04402-z |
[47] |
EMNET P, GAW S, NORTHCOTT G, et al. Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base[J]. Environmental Research, 2015, 136: 331-342. DOI:10.1016/j.envres.2014.10.019 |
[48] |
LIU Z H, LU G N, YIN H, et al. Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: A critical review[J]. Environmental Science & Technology, 2015, 49(9): 5288-5300. |
[49] |
GUO J, QIU S, DAI L, et al. The occurrence and removal of steroid estrogens in a full-scale anaerobic/anoxic/aerobic-membrane bioreactor process and the implication of the bacterial community dynamics[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 1072-1094. |
[50] |
BASILE T, PETRELLA A, PETRELLA M, et al. Review of endocrine-disrupting-compound removal technologies in water and wastewater treatment plants: An EU perspective[J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8389-8401. |
[51] |
TANG Z, LIU Z H, WANG H, et al. Occurrence and removal of 17α-ethynylestradiol (EE2) in municipal wastewater treatment plants: Current status and challenges[J]. Chemosphere, 2021, 271: 1251-1295. |
[52] |
PESSOA G P, DE SOUZA N C, VIDAL C B, et al. Occurrence and removal of estrogens in Brazilian wastewater treatment plants[J]. Science of the Total Environment, 2014, 490: 288-295. DOI:10.1016/j.scitotenv.2014.05.008 |
[53] |
YE X, GUO X S, CUI X, et al. Occurrence and removal of endocrine-disrupting chemicals in wastewater treatment plants in the Three Gorges Reservoir area, Chongqing, China[J]. Journal of Environmental Monitoring, 2012, 14(8): 2204-2211. DOI:10.1039/c2em30258f |
[54] |
JANEX-HABIBI M L, HUYARD A, ESPERANZA M, et al. Reduction of endocrine disruptor emissions in the environment: The benefit of wastewater treatment[J]. Water Research, 2009, 43(6): 1565-1576. DOI:10.1016/j.watres.2008.12.051 |
[55] |
JOSS A, ANDERSEN H, TERNES T, et al. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: Consequences for plant optimization[J]. Environmental Science & Technology, 2004, 38(11): 3047-3055. |
[56] |
FANG T Y, PRAVEENA S M, ARIS A Z, et al. Quantification of selected steroid hormones (17 beta-Estradiol and 17 alpha-Ethynylestradiol) in wastewater treatment plants in Klang Valley (Malaysia)[J]. Chemosphere, 2019, 215: 153-162. DOI:10.1016/j.chemosphere.2018.10.032 |
[57] |
KUMWIMBA M N, MENG F G. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review[J]. Science of the Total Environment, 2019, 659: 419-441. DOI:10.1016/j.scitotenv.2018.12.236 |
[58] |
YARAHMADI H, DUY S V, HACHAD M, et al. Seasonal variations of steroid hormones released by wastewater treatment plants to river water and sediments: Distribution between particulate and dissolved phases[J]. Science of the Total Environment, 2018, 635: 144-155. DOI:10.1016/j.scitotenv.2018.03.370 |
[59] |
CLARA M, STRENN B, SARACEVIC E, et al. Adsorption of bisphenol-A, 17 beta-estradiole and 17 alpha-ethinylestradiole to sewage sludge[J]. Chemosphere, 2004, 56(9): 843-851. DOI:10.1016/j.chemosphere.2004.04.048 |
[60] |
FENG Y J, ZHANG Z H, GAO P, et al. Adsorption behavior of EE2 (17 alpha-ethinylestradiol) onto the inactivated sewage sludge: Kinetics, thermodynamics and influence factors[J]. Journal of Hazardous Materials, 2010, 175(1-3): 970-976. DOI:10.1016/j.jhazmat.2009.10.105 |
[61] |
ANDERSEN H R, HANSEN M, KJOLHOLT J, et al. Assessment of the importance of sorption for steroid estrogens removal during activated sludge treatment[J]. Chemosphere, 2005, 61(1): 139-146. DOI:10.1016/j.chemosphere.2005.02.088 |
[62] |
LIN A Y C, REINHARD M. Photodegradation of common environmental pharmaceuticals and estrogens in river water[J]. Environmental Toxicology and Chemistry, 2005, 24(6): 1303-1309. DOI:10.1897/04-236R.1 |
[63] |
MA L, YATES S R. Dissolved organic matter and estrogen interactions regulate estrogen removal in the aqueous environment: A review[J]. Science of The Total Environment, 2018, 640-641: 529-542. DOI:10.1016/j.scitotenv.2018.05.301 |
[64] |
FONSECA A P, LIMA D L D, ESTEVES V I. Degradation by Solar Radiation of Estrogenic Hormones Monitored by UV-Visible Spectroscopy and Capillary Electrophoresis[J]. Water Air and Soil Pollution, 2011, 215(1-4): 441-447. DOI:10.1007/s11270-010-0489-7 |
[65] |
HAMID H, ESKICIOGLU C. Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix[J]. Water Research, 2012, 46(18): 5813-5833. DOI:10.1016/j.watres.2012.08.002 |
[66] |
ANDERSEN H, SIEGRIST H, HALLING-SORENSEN B, et al. Fate of estrogens in a municipal sewage treatment plant[J]. Environmental Science & Technology, 2003, 37(18): 4021-4026. |
[67] |
KOH Y K K, CHIU T Y, BOOBIS A, et al. Treatment and removal strategies for estrogens from wastewater[J]. Environmental Technology, 2008, 29(3): 245-267. DOI:10.1080/09593330802099122 |
[68] |
IFELEBUEGU A O. The fate and behavior of selected endocrine disrupting chemicals in full scale wastewater and sludge treatment unit processes[J]. International Journal of Environmental Science and Technology, 2011, 8(2): 245-254. DOI:10.1007/BF03326213 |
[69] |
MANICKUM T, JOHN W. Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa)[J]. Science of The Total Environment, 2014, 468: 584-597. |
[70] |
AZIZI D, ARIF A, BLAIR D, et al. A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters[J]. Environmental Research, 2022, 207: 1121-1196. |
[71] |
MCADAM E J, BAGNALL J P, KOH Y K K, et al. Removal of steroid estrogens in carbonaceous and nitrifying activated sludge processes[J]. Chemosphere, 2010, 81(1): 1-6. DOI:10.1016/j.chemosphere.2010.07.057 |
[72] |
LI Y M, ZENG Q L, YANG S J. Removal and fate of estrogens in an anaerobic-anoxic-oxic activated sludge system[J]. Water Science and Technology, 2011, 63(1): 51-56. DOI:10.2166/wst.2011.008 |
[73] |
GANI K M, KAZMI A A. Phthalate contamination in aquatic environment: A critical review of the process factors that influence their removal in conventional and advanced wastewater treatment[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(17): 1402-1439. DOI:10.1080/10643389.2016.1245552 |
[74] |
GANI K M, TYAGI V K, KAZMI A A. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: A review[J]. Environmental Science and Pollution Research, 2017, 24(21): 17267-17284. DOI:10.1007/s11356-017-9182-3 |
[75] |
ZHANG K, ZHAO Y B, FENT K. Occurrence and ecotoxicological effects of free, conjugated, and halogenated steroids including 17 alpha-hydroxypregnanolone and pregnanediol in Swiss wastewater and surface water[J]. Environmental Science & Technology, 2017, 51(11): 6498-6506. |
[76] |
DE CASTRO L V, BRANDT E M F, CAMPOS A C V, et al. Behavior of micropollutants in polishing units that combine sorption and biodegradation mechanisms to improve the quality of activated sludge effluent[J]. Water Air and Soil Pollution, 2018, 229(6): 1458-1479. DOI:10.1007/s11270-018-3820-3 |
[77] |
FRONTISTIS Z, BREBOU C, VENIERI D, et al. BDD anodic oxidation as tertiary wastewater treatment for the removal of emerging micro-pollutants, pathogens and organicmatter[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(10): 1233-1236. DOI:10.1002/jctb.2669 |
[78] |
GRANDCLEMENT C, SEYSSIECQ I, PIRAM A, et al. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review[J]. Water Research, 2017, 111: 297-317. DOI:10.1016/j.watres.2017.01.005 |
[79] |
HSIAO T H, CHEN Y L, MENG M, et al. Mechanistic and phylogenetic insights into actinobacteria-mediated oestrogen biodegradation in urban estuarine sediments[J]. Microbial Biotechnology, 2021, 14(3): 1212-1227. DOI:10.1111/1751-7915.13798 |
[80] |
HSIAO T H, LEE T H, CHUANG M R, et al. Identification of essential beta-oxidation genes and corresponding metabolites for oestrogen degradation by actinobacteria[J]. Microbial Biotechnology, 2022, 15(3): 949-966. DOI:10.1111/1751-7915.13921 |
[81] |
CRIDDLE C S. The Kinetics of cpmetabolism[J]. Biotechnology and Bioengineering, 1993, 41(11): 1048-1056. DOI:10.1002/bit.260411107 |
[82] |
LIAO Q, RONG H, ZHAO M, et al. Interaction between tetracycline and microorganisms during wastewater treatment: A review[J]. Science of The Total Environment, 2021, 757: 1439-1481. |
[83] |
SHI J H, SUZUKI Y, LEE B D, et al. Isolation and characterization of the ethynylestradiol-biodegrading microorganism Fusarium proliferatum strain HNS-1[J]. Water Science and Technology, 2002, 45(12): 175-179. DOI:10.2166/wst.2002.0424 |
[84] |
REN H Y, JI S L, AHMAD N U D, et al. Degradation characteristics and metabolic pathway of 17 alpha-ethynylestradiol by Sphingobacterium sp. JCR5[J]. Chemosphere, 2007, 66(2): 340-346. DOI:10.1016/j.chemosphere.2006.04.064 |
[85] |
O'GRADY D, EVANGELISTA S, YARGEAU V. Removal of aqueous 17 alpha-ethinylestradiol by rhodococcus species[J]. Environmental Engineering Science, 2009, 26(9): 1393-1400. DOI:10.1089/ees.2008.0272 |
[86] |
DE GUSSEME B, PYCKE B, HENNEBEL T, et al. Biological removal of 17 alpha-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor[J]. Water Research, 2009, 43(9): 2493-2503. DOI:10.1016/j.watres.2009.02.028 |
[87] |
YI T, HARPER W F JR. The link between nitrification and biotransformation of 17 alpha-ethinylestradiol[J]. Environmental Science & Technology, 2007, 41(12): 4311-4316. |
[88] |
SHI J, FUJISAWA S, NAKAI S, et al. Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea[J]. Water Research, 2004, 38(9): 2323-2330. DOI:10.1016/j.watres.2004.02.022 |
[89] |
SONG H L, YANG X L, XIA M Q, et al. Co-metabolic degradation of steroid estrogens by heterotrophic bacteria and nitrifying bacteria in MBRs[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(8): 778-784. |
[90] |
WANG L, LIU Z, JIANG X, et al. Aerobic granulation of nitrifying activated sludge enhanced removal of 17α-ethinylestradiol[J]. Science of The Total Environment, 2021, 801: 1495-1546. |
[91] |
GAULKE L S, STRAND S E, KALHORN T F, et al. 17 alpha-ethinylestradiol transformation via abiotic nitration in the presence of ammonia oxidizing bacteria[J]. Environmental Science & Technology, 2008, 42(20): 7622-7627. |
[92] |
SKOTNICKA-PITAK J, KHUNJAR W O, LOVE N G, et al. Characterization of metabolites formed during the biotransformation of 17 alpha-ethinylestradiol by nitrosomonas europaea in batch and continuous flow bioreactors[J]. Environmental Science & Technology, 2009, 43(10): 3549-3555. |
[93] |
SHENG Q, YI M, MEN Y, et al. Cometabolism of 17 alpha-ethynylestradiol by nitrifying bacteria depends on reducing power availability and leads to elevated nitric oxide formation[J]. Environment International, 2021, 153: 3569-3596. |
[94] |
YOSHIMOTO T, NAGAI F, FUJIMOTO J, et al. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants[J]. Applied and Environmental Microbiology, 2004, 70(9): 5283-5289. DOI:10.1128/AEM.70.9.5283-5289.2004 |
[95] |
PENG W L, FU Y L, JIA B, et al. Metabolism analysis of 17 alpha-ethynylestradiol by Pseudomonas citronellolis SJTE-3 and identification of the functional genes[J]. Journal of Hazardous Materials, 2022, 423: 127045. DOI:10.1016/j.jhazmat.2021.127045 |
[96] |
PAUWELS B, WILLE K, NOPPE H, et al. 17 alpha-ethinylestradiol cometabolism by bacteria degrading estrone, 17 beta-estradiol and estriol[J]. Biodegradation, 2008, 19(5): 683-693. DOI:10.1007/s10532-007-9173-z |
[97] |
LARCHER S, YARGEAU V. Biodegradation of 17 alpha-ethinylestradiol by heterotrophic bacteria[J]. Environmental Pollution, 2013, 173: 17-22. DOI:10.1016/j.envpol.2012.10.028 |
[98] |
RACZ L, MULLER J G, GOEL R K. Fate of selected estrogens in two laboratory scale sequencing batch reactors fed with different organic carbon sources under varying solids retention times[J]. Bioresource Technology, 2012, 110: 35-42. DOI:10.1016/j.biortech.2012.01.059 |
[99] |
KHUNJAR W O, MACKINTOSH S A, SKOTNICKA-PITAK J, et al. Elucidating the relative roles of ammonia oxidizing and heterotrophic bacteria during the biotransformation of 17 alpha-ethinylestradiol and trimethoprim[J]. Environmental Science & Technology, 2011, 45(8): 3605-3612. |
[100] |
KURISU F, OGURA M, SAITOH S, et al. Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp and Sphingomonas sp[J]. Journal of Bioscience and Bioengineering, 2010, 109(6): 576-582. DOI:10.1016/j.jbiosc.2009.11.006 |
[101] |
CHEN Y L, FU H Y, LEE T H, et al. Estrogen degraders and estrogen degradation pathway identified in an activated sludge[J]. Applied and Environmental Microbiology, 2018, 84(10): 1-18. |
[102] |
WU K, LEE T H, CHEN Y L, et al. Metabolites involved in aerobic degradation of the A and B rings of estrogen[J]. Applied and Environmental Microbiology, 2019, 85(3): 2218-2223. |
[103] |
LI S Y, SUN K, YAN X, et al. Identification of novel catabolic genes involved in 17 beta-estradiol degradation by Novosphingobium sp. ES2-1[J]. Environmental Microbiology, 2021, 23(5): 2550-2563. DOI:10.1111/1462-2920.15475 |
[104] |
TRAN N H, URASE T, NGO H H, et al. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants[J]. Bioresource Technology, 2013, 146: 721-731. DOI:10.1016/j.biortech.2013.07.083 |
[105] |
CLARA M, STRENN B, KREUZINGER N. Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration[J]. Water Research, 2004, 38(4): 947-954. DOI:10.1016/j.watres.2003.10.058 |
[106] |
CLARA M, STRENN B, GANS O, et al. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants[J]. Water Research, 2005, 39(19): 4797-4807. DOI:10.1016/j.watres.2005.09.015 |
[107] |
YE L, ZHANG T. Ammonia-oxidizing bacteria dominates over ammonia-oxidizing archaea in a saline nitrification reactor under low do and high nitrogen loading[J]. Biotechnology and Bioengineering, 2011, 108(11): 2544-2552. DOI:10.1002/bit.23211 |
[108] |
WANG L, JIANG X, LI A. Ammonia oxidation intermediates-induced abiotic transformation of 17α-ethinylestradiol in nitrification process of wastewater biological treatment[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108-171. |
[109] |
ZHANG C, LI Y, WANG C, et al. Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: A review[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(1): 1-59. DOI:10.1080/10643389.2015.1061881 |
[110] |
LIU Z H, DAI Y J, HUAN Y, et al. Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia[J]. Applied Microbiology and Biotechnology, 2013, 97(14): 6537-6547. DOI:10.1007/s00253-012-4444-y |
[111] |
ZHANG Q, XIE X, LIU Y, et al. Sugar sources as Co-substrates promoting the degradation of refractory dye: A comparative study[J]. Ecotoxicology and Environmental Safety, 2019, 184: 1096-1113. |
[112] |
JIA S Y, HAN H J, ZHUANG H F, et al. Bio-augmented submerged membrane bioreactor as an effective application for treatment of biologically pretreated coal gasification wastewater[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(5): 1532-1539. DOI:10.1002/jctb.4751 |
[113] |
XU B J, XU B, SHAN S W, et al. Co-metabolic degradation of iomeprol by a Pseudomonas sp and its application in biological aerated filter systems[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2018, 53(4): 310-316. |
[114] |
WANG J G, SUN Z R. Effects of different carbon sources on 2, 4, 6-trichlorophenol degradation in the activated sludge process[J]. Bioprocess and Biosystems Engineering, 2020, 43(12): 2143-2152. DOI:10.1007/s00449-020-02400-x |
[115] |
ZHAO J G, LI Y H, CHEN X R, et al. Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors[J]. Bioresource Technology, 2018, 255: 22-28. DOI:10.1016/j.biortech.2018.01.106 |
[116] |
董怡华, 胡筱敏, 和英滇, 等. 共代谢条件下光合细菌对2-氯苯酚的生物降解[J]. 应用生态学报, 2011, 22(5): 1280-1286. DOI:10.13287/j.1001-9332.2011.0176 |
[117] |
DELGADILLO-MIRQUEZ L, LARDON L, STEYER J P, et al. A new dynamic model for bioavailability and cometabolism of micropollutants during anaerobic digestion[J]. Water Research, 2011, 45(15): 4511-4521. DOI:10.1016/j.watres.2011.05.047 |
[118] |
KHUNJAR W O, LOVE N G. Sorption of carbamazepine, 17 alpha-ethinylestradiol, iopromide and trimethoprim to biomass involves interactions with exocellular polymeric substances[J]. Chemosphere, 2011, 82(6): 917-922. DOI:10.1016/j.chemosphere.2010.10.046 |
[119] |
YAN Z S, HAO Z, WU H F, et al. Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments[J]. Journal of Hazardous Materials, 2019, 367: 99-108. DOI:10.1016/j.jhazmat.2018.12.071 |
[120] |
ZHANG K, ZHANG Z, HU Z, et al. Bacterial community composition and function succession under aerobic and anaerobic conditions impacts the biodegradation of 17 beta-estradiol and its environmental risk[J]. Environmental Pollution, 2020, 267: 718-732. |
[121] |
CHIANG Y R, WEI S T S, WANG P H, et al. Microbial degradation of steroid sex hormones: Implications for environmental and ecological studies[J]. Microbial Biotechnology, 2020, 13(4): 926-949. DOI:10.1111/1751-7915.13504 |
[122] |
WANG B, NI B J, YUAN Z, et al. Cometabolic biodegradation of cephalexin by enriched nitrifying sludge: Process characteristics, gene expression and product biotoxicity[J]. Science of the Total Environment, 2019, 672: 275-282. DOI:10.1016/j.scitotenv.2019.03.473 |
[123] |
张博雅, 余珂. 微生物基因数据库在氮循环功能基因注释中的应用[J]. 微生物学通报, 2020, 47(9): 3021-3038. DOI:10.13344/j.microbiol.china.200233 |